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Direct classical trajectories are used to compute energy transfer parameters appropriate for use in master
equation calculations for the CH, == CHj; + H reaction in He at 300—2000 K. The quantum chemistry method
used in the direct trajectory calculations is MP2/aug’-cc-pVDZ, which is validated against higher level ab
initio calculations. The average energy transferred in deactivating collisions is shown to increase with the
initial rotational excitation J” of CH, and with the temperature of the bath gas T,,. When thermally averaged
over J', the resulting average downward energy transfer a is found to increase nearly linearly with T (0
= 110738} cm™"). The results of master equation calculations carried out using the single-exponential-down
model and the computed values of a are compared with experimental results and recent recommendations.
At elevated temperatures (> 600 K), good agreement between the predicted and experimental rate coefficients
is obtained. At room temperature, the computed rate coefficients are in good agreement with the experimental
results if the two-dimensional (E, J) formulation of the master equation is used. Smaller values of a (by
25%) are necessary to fit the experimental data at room temperature using the one-dimensional (£) master
equation. The present study, combined with previous ab initio transition state theory calculations for the CHj;
+ H capture rate, provides a complete first-principles characterization of the temperature and pressure dependent

rate coefficients for this simple single-well system.

I. Introduction

Master equation (ME) calculations' ™ may be used to obtain
temperature and pressure dependent rate coefficients for pro-
cesses with complex potential energy surfaces, multiple inter-
mediates, and competing products. The accuracy of these
calculations depends on the accuracy of the underlying ther-
mochemistry and elementary dynamics, as well as the treatment
of collisional energy transfer. For small- and moderate-sized
systems, well-validated quantum chemistry methods can be used
to compute barrier heights and channel energies with so-called
“chemical” accuracy (~1—2 kcal/mol). Quantitative kinetics for
elementary processes (e.g., bimolecular capture reactions,
isomerizations, etc.) can be obtained using transition state theory,
so long as suitable corrections are made to account for tunneling,
barrierless transition states, vibrational anharmonicities, etc.

For many systems, the dominant source of error in the ME
calculations is the treatment of collisional energy transfer, which
accounts for the activation and stabilization of the intermediate
complexes. In practice, one often empirically adjusts energy
transfer parameters in the ME calculations to fit experimental
data. These data are not always available, especially at pressures
away from the high-pressure limit where the results of the ME
are most sensitive to the treatment of collisional energy transfer.
Furthermore, even when suitable experimental data are available,
the transferability of the empirically derived energy transfer
parameters to other conditions or to other systems is uncertain.

Since the early work of Stace and Murrell, numerous
studies® " of collisional energy transfer between polyatomic
target systems and monatomic bath gases have been carried out
using classical trajectories. Although the details of the trajectory
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studies vary and few systematic studies exist, some general
trends have emerged. Many studies have noted significant
numbers of so-called “supercollisions”, i.e., collisions transfer-
ring energies several times greater than the average energy
transferred, and the energy transfer probability distribution has
been observed to have a long tail that is not well-represented
by a single exponential. Energy transfer typically increases
linearly with the total energy of the target, although some studies
suggest a more complicated energy dependence. Both increasing
the initial rotational excitation of the target species and heating
the bath gas have been show to enhance energy transfer. Details
of the intermolecular bath-target potential energy surface have
been shown to have some effect on energy transfer, whereas
energy transfer is relatively insensitive to details of the intramo-
lecular potential energy surface describing the internal structure
of the target species.

In previous trajectory studies, empirical or fitted analytic
many-body functional forms were typically used to describe the
intramolecular potential energy surface of the target species,
and pairwise additive functional forms (Lennard-Jones, “exp-
6”, etc.) were used to describe the interaction of the atomic bath
gas and the target species. One exception is the work of
Brunsvold et al.,'® where an MSINDO semiempirical potential
energy surface was used to describe ethane, and analytic
pairwise additive forms were used for the interaction with the
bath gas.

Here we use direct molecular dynamics (classical trajectories)
to study collisional energy transfer for the CHy + He system
and to determine energy transfer parameters for use in ME
calculations of the CH, == CH; + H reaction. This work differs
from much of the earlier work in two important ways. First, a
full-dimensional, fully anharmonic potential energy surface is
used to describe the CH, fragment and the CH,—bath gas
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interaction. Second, we compute highly averaged energy transfer
parameters suitable for use in ME calculations directly, without
attempting to resolve the underlying dynamical details.

There has been some previous theoretical work studying
energy transfer in the CHy; = CH; + H system. Hu and Hase’
used classical trajectories to model energy transfer in Ar at 1000
K using three analytic potentials. Energy transfer parameters
have also been obtained by fitting the results of ME calculations?® 22
to experimentally measured rates;’***~%° the energy transfer
parameters obtained in these studies are dependent on various
details of the ME calculations and may also be sensitive to the
experimental data used.

The major goal of this research is the description and
validation of a general and efficient strategy for obtaining energy
transfer parameters directly for use in ME analyses of unimo-
lecular reactions. This strategy, combined with ab initio transi-
tion state theory and quantum chemistry calculations, allows
for a complete first-principles description of the kinetics of
simple single-well systems.

II. Theory

A. Master Equation Analysis. The ME formalism employed
here has been discussed in detail elsewhere.>*! Briefly, the two-
dimensional ME for a simple irreversible dissociation reaction
can be written

—K(T, PX(E,))=Z), [ P(E.J:E",J)x(E',J") dE'—
J

Zx(E,J) — KE,Dx(E,J) (1)

where k(T, P) is the dissociation rate coefficient, x(E, J) is the
normalized population of CH, for each total energy E and total
angular momentum J, Z is the collision rate and is assumed to
be independent of E and J, P(E, J; E’, J') is the collisional energy
transfer function, and k(E, J) is the microcanonical rate
coefficient.

The collisional energy transfer function describes the prob-
ability of a collision with the bath gas transferring the system
from an initial state E’, J” to some other state E, J. To simplify
the solution of eq 1, this function can be written as

P(E,J:E", J') = P(E:E")@(E, J) @)

where it is assumed that the rotational distribution after the
collision is independent of E” and J'. This assumption allows
eq 1 to be reduced to an equivalent one-dimensional ME that
can be solved in a straightforward fashion.?! Miller and
co-workers*?! introduced the approximation

@(E,J)= (2 + Dp(E, J)/ p(E) 3)

where p(E, J) is the vibrational—rotational density of states at
E and J and

p(E)=D 2]+ D)p(E, J) (4)
J

This approximation has the desirable property that P(E, J; E’,
J’) automatically satisfies detailed balance if P(E; E’) is
constructed to do so. Equation 3 implies that the postcollision
J distribution contains populations that are simply proportional
to the number of states in the vicinity of any £ and J. Although
some subtle effects® are missing from this model, it includes
all the effects on unimolecular rate coefficients normally
associated with molecular rotation.
We adopt the exponential-down model
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P(E,E")= ﬁ exp(—AE/q),
in our analysis. This model assumes that collisional energy
transfer depends on AE = |[E — E’l but not on E or E
independently. In the master equation calculations, collisions
occurring with energies close to the threshold for dissociation
are most important in determining the thermal rate coefficients.
Collisional energy transfer has its largest effect on the unimo-
lecular rate coefficient at the low-pressure limit. Under these
conditions, except for states near the dissociation threshold, all
the bound states have their equilibrium populations, and the
unbound states have zero population (by definition of the limit).
As the pressure increases, this picture changes in that the
populations of unbound states begin to have nonzero popula-
tions, but at the same time collisional energy transfer has a
smaller effect on the rate coefficient. At the high-pressure limit
the rate coefficient is totally independent of collisional energy
transfer. As a consequence of these properties, a simple model
for energy transfer in which only the properties of bound states
near the dissociation limit (Ey;) are taken into account is quite
satisfactory. In eq 35, if E4 > @, o can be interpreted as the
average energy transferred in a deactivating collision, (AEy).

Miller et al.*! have shown that rate coefficients from ME
analyses are relatively independent of the form used for P(E,
E’) (for a specified (AE4)) in methane dissociation. This result
was not unexpected, and it is probably reasonable to conclude
that such will be the case for any single-channel thermal
dissociation. However, product distributions in multiple-channel
dissociations and in chemically activated problems that involve
low-lying (or high-lying) exit channels (isomerization or dis-
sociation) are likely to depend critically on the form of P(E,
E’), particularly on the existence or nonexistence of a long tail
(“supercollisions”). In fact, Miller and Chandler?® found large
effects from such a tail in studying the overtone isomerization
of methyl isocyanide. Such photoactivated problems are very
similar energetically to chemically activated ones.

One can cast the integrals in the master equation in discrete
form and write the ME as

dix)

ar Mix) (6)
where Ix) is the population vector and M is the transition matrix.
Chemical reaction is associated only with the slowest relaxing
eigenmode of M, and the dissociation rate coefficient is equal
to —A;, where A, is the eigenvalue of M with the smallest
magnitude (all of the eigenvalues are negative). The process of
determining the eigenvalues of M is facilitated by symmetrizing
M, i.e., by converting eq 6 to the equation

E<E (5

dly) _

0 Gly) (N
where ly) contains scaled populations and G is real and
symmetric. Because this master equation is irreversible, we
obtain directly only the dissociation rate coefficient. However,
the reverse association rate coefficient can be obtained from
detailed balance. The validity of this approach has been
demonstrated by Miller and Klippenstein.?’ In the present work
we use both the two-dimensional ME described above and a
one-dimensional ME in which E, the total vibrational —rotational
energy of the molecule, is the independent variable.

In the ME calculations, experimental values®® are used for
the zero-point inclusive dissociation energy (36 168 cm™!),
frequencies (3019, 2917, 1543, and 1306 cm™!), and rotational
constant (5.24 cm ') of CH, and for the frequencies (3161, 3004,
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Figure 1. CH, + He interaction energy as a function of the C—He

distance for three approaches calculated using the MP2/aug’-cc-pVDZ
(dashed) and QCISD(T)/CBS (solid) methods.

1396, and 606 cm™') and rotational constants (9.58 and 4.74
cm™!) of CHs. Lennard-Jones parameters? are used to compute
the CH, + He collision frequency Z = Z;;, where or; = 2.94
A (the arithmetic mean of 2.55 and 3.33 A, the collision radii
of He and CH,, respectively), and €; = 25.8 cm™! (the
geometric mean of 7.0 and 94.9 cm™', the Lennard-Jones well
depths for He and CHy, respectively). The CH; + H capture
rate coefficient is taken from the direct VRC-TST calculations
of ref 30. Master equation calculations were carried out using
Variflex.?!

B. Direct Classical Trajectories. Potential Energy Surface.
The CH, + He system has a weak van der Waals well (~28
cm™!) that may play a role in controlling energy transfer at low
temperatures. Previous trajectories studies'* have indicated that
calculated energy transfer averages may be sensitive to the
“softness” of the intermolecular repulsive wall. Here we use
fully dimensional, fully anharmonic direct dynamics to describe
the joint intermolecular and intramolecular potential energy
surface.

Several levels of quantum chemistry suitable for direct
dynamics calculations (MP2 and DFT, with small to moderately
sized basis sets) were validated against QCISD(T)/CBS calcula-
tions, where the complete basis set (CBS) limit*? was estimated
from aug-cc-pVDZ and aug-cc-pVTZ calculations. In general,
DFT methods do not properly describe dispersion interactions,
and this was confirmed by our tests of several widely used
functionals and basis sets. (Note that we did not test DFT
methods designed specifically for nonbonding interactions.
Several such functionals are actively being developed.*) MP2
results were found to be very sensitive to the size of the basis
set and most likely suffer from basis set superposition error. A
good compromise of accuracy and computational efficiency was
obtained using the restricted MP2 method with the aug’-cc-
pVDZ basis set.** The “aug’-” prefix denotes that the aug-cc-
pVDZ basis set® is used for the “heavy” atoms (C and He),
and the cc-pVDZ basis set®® is used for H.

Potential energy curves for three approaches of the He atom
to CH,4 are shown in Figure 1. In general, the van der Walls
interactions and repulsive wall shapes and distances predicted
by the MP2/aug’-cc-pVDZ method are in good agreement with
the QCISD(T)/CBS calculations. A comparison may also be
made with the previous work of Calderoni et al.,’’ who
characterized the potential energy surface for this system at
several levels of theory. The highest level of theory presented
in ref 37 (MP4/aug-cc-pVTZ augmented with additional bond
functions) predicts well depths of 28.1, 21.5, and 14.4 cm™!
for the face, edge, and vertex approaches, respectively. These
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values are in excellent agreement with the QCISD(T)/CBS
calculations reported here (28.1, 22.3, and 14.8 cm™). Similar
good agreement is obtained for the calculated MP4/aug-cc-pVTZ
and QCISD(T)/CBS equilibrium and repulsive wall distances.

The MP2/aug’-cc-pVDZ method predicts CH, frequencies of
3207, 3063, 1551, and 1323 cm™! and a rotational constant of
5.19 cm™! in good agreement with the experimental values. The
calculated CH, — CH; + H classical dissociation energy is
37252 cm™l.

The restricted MP2 method used in the direct trajectory
calculations is not appropriate for extended C—H distances. The
maximum C—H distance accessed during the trajectory simula-
tions is 1.8 A, however, which is less than the distance at which
the restricted and unrestricted MP2 solutions begin to diverge
(~2.2 A).

It is unclear how sensitive the predicted energy transfer
parameters are to details of the potential energy surface (e.g.,
vibrational frequencies, van der Waals well depths, etc). The
restricted MP2/aug’-cc-pVDZ method provides reasonable ac-
curacy, while retaining the computational efficiency to allow
for the computation of thousands of direct dynamics CH, +
He trajectories.

The Gaussian03* and Molpro 2006% program packages were
used.

Initial Conditions. Due to the relatively high computational
cost associated with direct trajectories, initial conditions were
prepared such that sampling over the phase space of CHy, the
thermal distribution of the relative collision energy, and the
impact parameter were carried out simultaneously. This ap-
proach allows for the calculation of the average overall and
downward energy transfer with good precision without resolving
the more complicated underlying dependence of these averages
on the various collision parameters. The sensitivity of the
computed energy transfer moments on the initial rotational state
of CH, was considered explicitly.

Ensembles of CH, + He collisions with fixed values of J’
(the initial angular momentum of CHy) and T,y (the temperature
of the bath gas) were generated as follows. The initial
coordinates and momenta for CH4 were sampled evenly in time
from several equilibration trajectories of isolated CH4. The
equilibration trajectories were run for 1000 fs with a fixed time
step of 0.25 fs and were initiated from the minimum-energy
structure of CH, with zero total angular momentum, a total
energy equal to 95% of the rotationless MP2/aug’-cc-pVDZ CH,
— CH; + H bond dissociation energy, and randomly assigned
momenta. The initial vibrational energy of CH4 was scaled to
E’yin(J), which depends on J’ as discussed below, and the
corresponding rotational energy E’.(J") was added about a
random axis. (Note that the nuclear coordinates were not
adjusted when the vibrational energy was scaled. The energy
adjustments were small, and dynamical differences between our
ensemble and a true microcanonical ensemble at E';, are likely
negligible.)

We wish to study energy transfer in deactivating collisions
near the dissociation threshold. The vibrational energy required
for rotationally adiabatic dissociation Eg, decreases as a function
of rotational excitation due to the geometry dependence of the
rotational energy. In Figure 2, the MP2/aug’-cc-pVDZ rotation-
ally adiabatic vibrational dissociation energies for CH; + H are
shown as a function of J and its projection K. (The rotational
symmetry of the system is that of a symmetric top along the
minimum energy path for dissociation.) We set E'y;,(J") = 0.95
[Egiss(J', K* = 0) + Eg(J', K* = J)], which decreases with
increasing J'. The initial total energy for CH4 was therefore E’
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Figure 2. Vibrational dissociation energy (Eg;ss) for CHy as a function
of rotational excitation J for K = 0 (thin solid) and K = J (thin dotted).
The average of these curves (thin dashed) is used to define the initial
vibrational energy in the trajectory calculations. The sum of the average
vibrational energy and the rotational energy (i.e., the total energy of
CH,) is also shown (heavy solid).

= F'yiy + E'.o, Which increases with J’. This strategy differs
from previous studies of the effect of rotational excitation on
energy transfer, where typically as the initial rotational energy
was varied, either the initial vibrational energy or the total
energy was held fixed. Here, the initial vibrational energy was
set as a fixed fraction of the dissociation energy, which varies
with J'.

Several studies have indicated that energy transfer depends
linearly on E’. Lendvay and Schatz,'> however, reported that
energy dependence is minor at sufficiently low or high E’.
Unfortunately, we cannot readily perform extensive energy
dependence tests here, and our choice of E’y;, is one source of
uncertainty in the present study.

The square of the impact parameter b was sampled evenly
from 0 to bZ.., the CH, fragment was given a random
orientation, and its center of mass was placed at a distance R’
from He. The initial relative collision energy E’;.,s was sampled
from a Maxwell distribution for each temperature Ty,;,. The CHy
+ He collisions were integrated using the Bulirch—Stoer
variable step size integrator®® and an integrator tolerance small
enough to ensure total energy and total angular momentum
conservation of at least 10 cm™! and 107 A per trajectory.
Average total energy and total angular momentum conservation
were 2 cm ™! and 2 x 107* A per trajectory. Trajectories were
terminated when He was at least a distance of R from the center
of mass of CH4. Fragmentation of CH4 was not energetically
allowed. Each simulation consisted of N,; = 200—475 trajec-
tories. Checks were made to ensure that the results of the
simulation did not depend on our choice of by, (4.25 A), R (6
A), or R (5.5 A). Along with the rule for E'y;, the parameters
defining each energy transfer simulation are J” and Thup.

Final State Analysis. If the final CH, + He separation is
chosen to be suitably large, the final relative translational energy
E'\ans and total angular momentum of CHy, J, can be calculated
unambiguously. By conservation of energy, the change in the
total energy of CH, for trajectory i is AE; = Eyansi — Eans.i-
The following energy transfer averages were calculated for each
ensemble

Nlmj

ZHS
(AE) = Z—Z AE/N,, ®)

L) i=1

©)
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Z Nlruj
(AE,) =— ;z min(AE,, 0)/N, (10)

L) i=1

where Zys is the hard sphere collision frequency
ZHS = ﬂbrznax\jngTbath/‘n/u (1 1)

7y is the Lennard-Jones collision frequency

Z; ;= 70} (\8kp T/ T/ (0.7 4 0.52 log, o (kg Ty un/ €1.0))
(12)

Ny is the number of deactivating collisions, « is the reduced
mass of CH; and He, and o7; and ¢; are Lennard-Jones
parameters.

The per-collision energy transfer averages in eqs §—10 are
scaled by Zys/Z; 5, and a consistent set of Lennard-Jones collision
parameters were used when evaluating Z in the ME calculations
(i.e., Z=Z;yin eq 1). In the trajectory simulation, the collision
frequency depends on b, and is given by Zys. The chemically
important quantity is the energy transferred per unit time (which
is the product of the collision frequency and the average energy
transferred per collision), and the scaling in eqs 8—10 ensures
that this quantity is treated equally in the ME and trajectory
calculations, despite the differing collision frequencies. In
general, calculated or measured per-collision energy transfer
moments will depend on the choice of collision frequency, and
scaling is required to make meaningful comparisons if different
collision frequencies are used.’

One may define an effective hard sphere collision diameter
based on the Lennard-Jones potential by equating eqs 11 and
12 and solving for b,,,. This value will be denoted as b;; and
depends on temperature.

The change in the rotational energy is defined as

I+ DR T+ DR
Y] 21

€q €q

13)

where Iq is the MP2/aug’-cc-pVDZ moment of inertia for the
equilibrium configuration of CHy. The change in the vibrational
energy is calculated AEy;,; = AE; — AE, -

One-sigma uncertainties are reported for the average energy
transfer parameters, as estimated using the bootstrap resampling
method.'3#142 This approach provides uncertainty estimates for
unbiased samples without prior knowledge of the underlying
distribution function. Tests were carried out to show that the
predicted uncertainties decreased roughly as the inverse of the
square root of the number of trajectories.

III. Results and Discussion

A. Energy Transfer. Energy transfer simulations were
carried out for Ty, = 300, 600, 1150, and 2000 K and for
several values of J’, as summarized in Table 1. Bootstrap
uncertainty estimates indicate that (AE ) and (AE?)"? are
converged to 10—20% despite the relatively modest number of
trajectories in each simulation (200—475).

In Figure 3, —(AE), —(AE.y), and —(AE;,) are plotted as a
function of J”. We note that in thermal rotational distributions
of CHy,, the average values of J at 300, 600, 1150, and 2000 K
are 5.1, 7.4, 10.5, and 14.0 A, respectively. In the limit where
rotational energy is uncoupled from vibrational energy, rotational
energy transfer may be expected to be positive for rotational
quantum numbers less than the thermal averages (as the bath
heats up the system rotationally) and negative for higher
rotational quantum numbers (as the bath cools down the system
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TABLE 1: Calculated Energy Transfer Averages (cm™!)

Jasper and Miller

Touns K J, h E'uip, €V E'ror, €V E, eV Nirgj (AEy) —(AE) (AE?)
300 0 4.39 0.00 4.39 245 75 £ 10 —31+£12 126 £+ 14
10 4.36 0.07 443 210 188 £ 25 54 +£21 198 + 20
20 4.27 0.27 4.54 210 282 + 48 109 + 30 285 + 39
600 0 4.39 0.00 4.39 220 77+ 13 —167 £ 31 287 £ 41
10 4.36 0.07 4.43 200 203 + 29 5429 245 + 27
20 4.27 0.27 4.54 200 337 £49 91 £36 303 £ 32
1150 0 4.39 0.00 4.39 215 94 £ 15 —290 + 53 465 £ 90
10 4.36 0.07 4.43 250 294 + 38 —90 £ 44 399 + 25
20 4.27 0.27 4.54 335 628 £ 89 164 + 62 653 £ 79
30 4.14 0.60 4.74 340 654 +93 264 + 68 726 + 94
2000 0 4.39 0.00 4.39 285 138 £ 28 —451 £ 65 641 =90
20 4.27 0.27 4.54 375 740 £ 99 —26 £ 81 856 £ 73
40 3.98 1.06 5.03 475 1101 £ 188 343 + 124 1443 £ 321

rotationally). The present results show positive rotational energy
transfer for low J” and negative rotational energy transfer for
larger J’, in agreement with this general trend. The value of J’
at which the average rotational energy transferred is zero,
however, is shifted to larger values of J’ (by a factor of ~1.5)
than would be expected based on the limit uncoupled rotational
motion discussed above. This shift can be attributed qualitatively
to the coupling of the rotational and vibrational manifolds, where
the near-threshold vibrational energies likely heat the system
rotationally, shifting the rotational energy transfer curves in
Figure 3 downward.

Average vibrational energy transfer is found to be generally
smaller in magnitude than and inversely related to average
rotational energy transfer. The averages in Figure 3 obscure the
significance of rotational—vibrational energy transfer, and it is
difficult to make meaningful interpretations of the mechanism
of energy transfer based on these averages alone. Rotational —vibrational
energy transfer correlation coefficients® computed for each of
the ensembles were found to vary from —0.5 to —0.7. These
values support the inverse rotational —vibrational energy transfer
correlation suggested in Figure 3. No clear trends in the
correlation coefficients emerged with respect to J* or Tpan.
Overall, these considerations suggest that both rotational —vibrational
energy transfer and energy transfer from the bath gas play a
role in determining the overall energy transfer.

In Figure 4, average downward energy transfer is shown as
a function of impact parameter for the (Tp,/K, J'/R) = (300,

200

(b) 600 K

(d) 2000 K

0 5 10 15 20 25 30 0 5 1015 2025303540
J'h J'h

Figure 3. Average total (squares), rotational (circles), and vibrational

(triangles) energy transfer.

10), (600, 10), (1150, 10), and (2000, 20) simulations. Trajec-
tories were binned as a function of »* with a bin size of 2 A2,
such that each bin contains approximately equal numbers (Vi
9) of trajectories. The noise in the plots is due to the relatively
poor statistics for each bin. Figure 4 indicates that the present
calculations are likely converged with respect to by, (4.25 A)
for our quoted uncertainty (10—20%). We note that the effective
hard sphere diameters based on the Lennard-Jones potential by ;
are 2.7—2.3 A for 300—2000 K and are significantly shorter
than the range over which significant energy transfer occurs.

We find that (AE?)"? also increases with respect to the
temperature of the bath gas and, typically, with J’. Troe showed*’
that if one assumes an exponential down model, the moments
(AE), {AEy), (AE,), and (AE®'? are related by

(AE) =(AE,) —(AE,) (14)
where (AE,) is the average upward energy transfer and

(AE Y+ (AE)

WEYE =\ 2 &E,) T ok

(15)
We used the present calculated values of (AEy) and (AE,) to
test whether our energy transfer moments satisfied eqs 14 and
15. The values of (AE) estimated using eq 14 show qualitatively
correct trends with respect to J* and Ty, but deviate from the
directly calculated values (given in Table 1) by more than the
combined statistical uncertainty. Using eq 15 to estimate (AE*)!"?
results in values that deviate from the calculated values by
5—50% and that are typically too high. Equations 14 and 15

are not satisfied due to the “long tail” of the true nonexponential
probability distribution of AE, as discussed next.

0 R
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
b, &

Figure 4. Average downward energy transfer as a function of impact
parameter for J* = 10 A and Ty, = 300 (circles), 600 (triangles), and
1150 K (diamonds) and for J* = 20 A and Ty, = 2000 K (squares).
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Figure 5. Average downward energy transfer as a function of J' for
Toan = 300 (circles), 600 (triangles), 1150 (diamonds), and 2000 K
(squares). Thermal probability distributions of J* for the same temper-
atures with arbitrary scaling are shown as dashed lines.

Although the relatively small number of trajectories prevents
a quantitative investigation, our results are consistent with a
biexponential probability distribution of AE We find that 3—6%
of trajectories in each ensemble have AE; > 5(AEy), and these
trajectories may be identified as supercollisions. (In an expo-
nential distribution, less than 1% of trajectories would satisfy
this requirement.) Supercolllisions contribute significantly to the
energy transfer averages. Arbitrarily removing supercollisions
lowers the calculated values of (AEg) by 15—40%. This is
potentially a cause for concern in the present study, as here we
are limited in the number of trajectories we can compute, and
our results may not be converged with respect to the long tail
of the biexponential distribution. Clearly, supercollisions making
up only a few percent of collisions suggests that the lower limit
on the number of trajectories required to obtain meaningful
energy transfer averages is at least a few hundred and is close
to the number of trajectories carried out in the present study.

The average downward energy transfer (AE;) for each
simulation is plotted in Figure 5. The results suggest a near
linear dependence on J’, with a slope and an intercept that both
increase with the temperature of the bath gas.

As discussed in section II.A, in our implementation of the
ME, o in eq 5 is identified with a temperature dependent value
of (AEy) that is independent of J’. To obtain o from the present
set of calculated values of (AEy), some averaging over J’ is
required. It is not clear which average over J’ is the most
appropriate for use in ME calculations. We test the simple
approach of averaging a linear least-squares fit to the data in
Figure 5 for each Ty, over a thermal distribution of J'. The
thermal distributions of J* are shown in Figure 5, and the
resulting values of o are shown in Figure 6.

The calculated values of a increase with temperature, as
expected from numerous previous studies of energy transfer.
As seen in Figure 5, we may identify two sources for this
temperature dependence. First, for a given value of J', (AEy)
increases with temperature. Second, the thermal distribution of
J’ is shifted to higher values at higher temperatures, and these
higher values of J* are also associated with higher values of
(AEg). The identification of these two effects may aid in
developing simple models of energy transfer.

The four calculated values of o for 7 = 300—2000 K were
fit to a two-parameter model

0L = Oy (T/300K)" (16)

with n = 0.81 and azp = 110 cm™! by minimizing the rms
error. We note that linear or near-linear dependence on
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Figure 6. Calculated energy transfer parameters as a function of Ty,
(diamonds), along with a best fit of these data to eq 9 (thick solid line).
The previous fitted values of Miller et al.?! (300—1000, 1600—2500
K; thin solid lines), Golden?® (300—2000 K; thin dashed line), and
Seakins et al.?’ (300—600 K; thin dotted line) are also shown.

temperature has been reported for several systems, and our
results are fit reasonably well (although less well) by n = 0.90
and O30 = 95 cm™! or n = 1.0 and 0300 = 80 cm™ .

Assuming a linear temperature dependence for o (n = 1),
Golden? recently fit the results of ME calculations to experi-
mental association®® and dissociation®* rates in He to obtain ot
= 100 cm™!. The values derived in that study are shown in
Figure 6 and are in good agreement with the calculated ones
presented here.

Seakins et al.?’ studied the association kinetics of deuterium-
substituted methyl radicals with deuterium atoms experimentally.
They used their measured rate coefficients to obtain a high-
pressure limit for the unsubstituted CH; + H association rate
coefficient of 2.9 x 107" cm™', which is in excellent agreement
with the direct VRC-TST calculation.®® They then used this
value in ME calculations to show that the 300—500 K
experimental data of Brouard et al.?® are reproduced well using
0300 = 210 cm™! and n = 0.5. These values of a are ~1.7 times
larger than the present calculated values for this temperature
range.

We note that the ME formalisms used by Golden?’ and
Seakins et al.? differ in several important ways from one another
and from the present formalism, and these differences preclude
a quantitative comparison of the various estimates of a.

For methane dissociation in Ar, Miller et al.?! fit the results
of a two-dimensional ME calculation to the low-pressure limit
measured by Kiefer and Kumaran* for 1600—5000 K and to
the recommendation of Baulch et al.> for 300—1000 K. Their
results are shown in Figure 6. The derived values for 1600—2000
K are only 4% lower than the present results for He. At lower
temperatures (300—1000 K), there is additional uncertainty in
the experimental low-pressure limit, and Miller et al. report fitted
values of a that differ by up to 25% from the present results
for He.

The present results are in excellent agreement with Hu and
Hase’s calculated values’ at 1000 K in Ar (~300 cm™"), which
were obtained via trajectory simulations using several empirical
potentials.

B. Master Equation Calculations. One- and two-dimen-
sional master equation calculations for CH; + H == CH, in He
were carried out using the calculated values of a. In Figure 7,
the predicted association rate coefficients are compared with
the experimental measurements of Pilling and co-workers? and
the recent recommendations of Baulch et al.> at 300 and 600
K.
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Figure 7. Calculated CH; + H — CH, rate coefficient in He at (a)
300 and (b) 600 K using the two-dimensional ME (thick solid line)
and the one-dimensional ME (thin solid line). The effect of changing
the computed o by a factor of 2 on the two-dimensional rate coefficient
is shown by the thin dashed lines. The recommendation of Baulch et
al.? (thick dotted lines) and the experimental results of Brouard et al.?®
(circles) are also shown. Horizontal lines indicate the high-pressure
limit.

At room temperature, the two-dimensional rate coefficient is
in excellent agreement with the recent recommendation and is
in good agreement with the measured results at pressures greater
than ~100 torr. Neither the present results nor the recommended
values of Baulch et al. agree with the lowest-pressure experi-
mental measurements; the experimental results suggest a more
significant pressure dependence. The one-dimensional rate
coefficient overestimates the recommended result for moderate
and low pressures. Using the one-dimensional ME formulation,
a value of & = 100 cm™! (25% lower than the calculated value)
results in good agreement with the recommended values.

At 600 K, the differences between the one-dimensional and
two-dimensional treatments are minor, and the ME results with
the calculated value of o are in excellent agreement with the
recommended and experimental values.

The sensitivity of the results of the ME calculations to the
value of a is also shown in Figure 7. The calculated values of
a are clearly more accurate than the results of ME calculations
using 20 or a/2. We also tested treating the umbrella motion
of CHj3 as an anharmonic oscillator when calculating the
association kinetics, and the results were found to be very similar
to a full harmonic treatment, differing by less than 15%.

Next we consider the dissociation of CH,4 at 1150 and 2000
K, and the results are shown in Figure 8. At 1150 K, the present
dissociation rates are in good agreement with the recommenda-

Jasper and Miller
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(a) 1150 K

4 " " "

10* 10° 10° 10’ 10°

P, Torr
Figure 8. Calculated CH, — CH3 + H rate coefficient in He at (a)
1150 and (b) 2000 K using the two-dimensional ME (thick solid line)
and the one-dimensional ME (thin solid line). The effect of changing
the computed a by a factor of 2 on the two-dimensional rate coefficient
is shown by the thin dashed lines. The recommendation of Baulch et
al.? (thick dotted lines) and the experimental results of Barnes et al.>*
(circles) are also shown. Horizontal lines indicate the high-pressure
limit.

tion of Baulch et al.>® and with the experimental results of
Barnes et al.?* at high pressures. The lower-pressure experi-
mental values are larger than the rate coefficient predicted here.
At 2000 K, the recommendation of Baulch et al. differs
significantly from the present rates.

Overall, although experimental rates for CH; + H == CHy in
He are somewhat limited, the values of o obtained from the
direct trajectory studies, combined with a single-exponential-
down model for energy transfer and a two-dimensional master
equation treatment, provide an accurate description of the
kinetics of this system.

IV. Conclusions

Direct classical trajectory simulations were used to compute
energy transfer parameters for the CH; + H == CH, reaction in
helium. Energy transfer was found to increase with both the
initial rotational state of CH4 and with the temperature of the
bath gas. Temperature-dependent energy transfer parameters
suitable for use in master equation calculations employing the
exponential-down model were obtained by averaging over
thermal distributions of the initial rotational state of CH,. The
resulting association and dissociation rate coefficients were
found to be in excellent agreement with available experimental
results and recent recommendations.
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This study demonstrates that trajectory calculations, along
with ab initio determinations of energetics and kinetics, can
provide a complete first-principles characterization of association
and dissociation kinetics.
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